

Page 1/38

TagItSmart!

Smart Tags driven service platform for enabling
ecosystems of connected objects

Grant agreement 688061

Secure and reliable FC-scanner usage

Deliverable ID: D 3.2
Deliverable Title: Secure and reliable FC-scanners usage
Revision #: 1.0

Dissemination Level: Public

Responsible beneficiary: UNIPD
Contributing beneficiaries: UNIS, EVT, UPC, SIE
Contractual date of delivery: 30.06.2017
Actual submission date: 07.07.2017

Start Date of the Project: 1 January 2016 Duration: 36 Months

Ref. Ares(2017)3453059 - 08/07/2017

Page 2/38

Contents

Section 1 - Introduction .. 3

1.1 Objectives ... 3

1.2 Organisation ... 4

Section 2 - State-of-the-art on security of mobile applications 5

2.1 Mobile Malware Detection Techniques ... 5

2.2 Mobile Data Protection and Privacy Preservation Techniques 6

2.3 Security in NFC/RFID based communication channels..................................... 8

2.4 Discussion on Related Work ... 9

Section 3 - Secure and reliable scanning ...10

3.1 System level security..10
3.1.1 Sandboxing Techniques ..10
3.1.2 Remote attestation ..20

3.2 Communication reliability and security...21
3.2.1 Vulnerabilities in the FC-Scanner to backend communication21
3.2.2 Authentication and API Keys ...21
3.2.3 Secure communication ..22
3.2.4 Role-based authorisation ..23

Section 4 - Enhancing security and user privacy based on context24

4.1 Privacy Protection in Mobile Applications ..24
4.1.1 User-in-the-Loop Verification System ..25

4.2 Security and privacy based on user context...30
4.2.1 Current State of the Art in Context Recognition ...30
4.2.2 Context Recognition in TagItSmart! ...31

Section 5 - Conclusions ...34

Section 6 - References ...35

Page 3/38

Section 1 - Introduction

The overall objective of the TagItSmart (TIS) project is to create an open, interoperable
cloud-based platform that could be effectively used by various consumer-oriented service
providers for managing the lifecycle of everyday mass-market objects, and for composing
and offering value added services to customers. These mass-market objects when combined
with our SmartTags will create a connected Internet of Things (IoT) ecosystem. The
SmartTags combine the capabilities of functional inks with the pervasiveness of digital QR-
codes and electronic printed circuits (e.g. NFC tags). The resultant smart objects then act as
intelligent markers for a variety of environmental conditions by changing their status in
response to these and can also be seamlessly tracked throughout their lifecycle, through
embedded tag readers (i.e., FC-scanners) in the mobile devices.

The data extracted from the SmartTags observations, in conjunction with contextual
information, enables a new ecosystem of SmartTag-enabled services and intelligent
applications for new markets. Hence, the security and communication reliability in the front-
end system of TagItSmart that includes the billions of FC-scanners and SmartTags becomes
an essential task. In particular, the following functionalities of the front-end system should be
insured: (i) the communication between the FC-scanner and SmartTag must be secure and
reliable in order to extract correct information from these tags; (ii) the FC-scanner installed in
a mobile device must execute in a secure environment i.e., the underlying OS and other
applications running in parallel in the same device are not able to affect its normal
functionalities; and (iii) an adversary should not be able to compromise the FC-scanner in
order to leak any private information (such as GPS or camera data) of the user that is also
stored on the same device. Additionally, solutions that ensure security of communication
between FC-scanner and TIS back-end, and the use of contextual information are also
envisioned to enhance the security in the whole system. For instance, dynamically block
unintended (e.g., device in pocket) or even intended scan attempts (e.g., scan while in front
of an ATM or scan/transmit while in a questionable environment such as when using
unsecured/public WiFi) based on the context.

1.1 Objectives

The main aim of this deliverable is to research and develop various techniques that will allow
the users of FC-scanner to securely and reliably extract the information from SmartTags, use
it, and securely share it with the TIS service platform. The goal is to ensure the secure and
reliable use of the FC-scanner application. Particular attention will be devoted to the
identification of possible threats the system could be exposed to during the SmartTags
scanning process. For the identified threats, we will investigate and propose possible security
solutions. To this end, we will define solutions:

• to allow FC-scanners to verify the authenticity or maliciousness of components
involved in scanning applications such as device sensors (audio, camera, GPS, to
name a few) and a building block to guarantee essential security features which
includes data flow integrity (i.e., a “correct” behaviour of the FC-scanner software)
and remote attestation (i.e., verify that the platform is running an authorized FC-
scanner software). The communication reliability and security characteristics of the
wireless channel (i.e., NFC or RFID) that will be used for data communication
between the FC-scanner and SmartTags will be investigated to report the impact on
the system for the cases, where the communication channel is compromised or
misused by an adversary i.e., relay attack, eavesdropping and jamming. In particular,
a secure communication between the SmartTags and the FC-scanner as well as

Page 4/38

between the FC-scanner and the existing infrastructure should be addressed in order
to prevent participating users from being the target of maliciously deployed
SmartTags.

• at system level by using sandboxing techniques for executing FC-scanner
applications in order to support permission-based and context-based access control
on sensitive data that is stored on the same device, and to address the security
concerns about data sharing, leakage and loss.

1.2 Organisation

The rest of this document is organized as follows. In section 2, we discuss the state-of-the-
art related to the research topics that we are addressing in this deliverable (i.e., a secure and
reliable usage of FC-Scanner application). This includes discussion on the mobile malware
detection techniques, the mobile data protection and privacy preservation techniques, and
the security in NFC/RFID communications. In section 3, first, we present a new sandboxing
technique that ensures the correct behaviour and functionality of the FC-Scanner application.
Our approach ensures that the functionality of FC-Scanner application remains unaffected in
the presence of a strong adversary. Then, we present a novel technique that allows the
developers to implement a stealthier and modular malware analysis architecture that could
be used to further secure the FC-Scanner application from possible advanced malware
attacks. We also discuss the possible use of remote attestation process for authenticating
the FC-Scanner application. Furthermore, we propose solutions to ensure secure
communication between the FC-Scanner and the TIS platform. In section 4, we propose
various innovative techniques that could be envisioned to enhance the security of the FC-
Scanner and the privacy of user mobile data using the contextual information extracted from
mobile and other sensors. Finally, in section 5, we present the conclusion and directions for
future work.

Page 5/38

Section 2 - State-of-the-art on security of mobile applications

With the continuous digital advancements, smartphones have become very essential
components for many routine tasks such as paying bills, transferring money, instant
messaging, emails, extracting product information while shopping, to name a few. This
extensive use of mobile devices make them a very attractive attack surface for cyber thieves
as these devices hold personal details (i.e., accounts, locations, contacts, and photos) and
have potential capabilities for eavesdropping (i.e., unauthorized real-time interception of a
private communication) by using various means such as cameras/microphone, malicious
applications, wireless connections, to name a few. Android, being the most popular mobile
platform, is the target of malicious hackers who are trying to use Android app as a tool to
break into and control the device.

In this section, we present a brief overview of the various security and privacy aspects that
are closely related to the mobile applications (such as FC-Scanner) and the mobile devices
usage. We discuss the existing vulnerabilities in mobile devices that lead to various threats to
the security and privacy of their users. We will also discuss the corresponding state-of-the-art
countermeasures that are used to detect or avoid these security threats.

2.1 Mobile Malware Detection Techniques

The proliferation of mobile devices has opened the mobile era and rapidly increased the
popularity of mobile apps. Smartphones have become pervasive due to the availability of
office applications, Internet, games, vehicle guidance using location-based services apart
from conventional services such as voice calls, SMS messages, and multimedia services.
The explosive growth of mobile communication brings substantial burden to the mobile
security management. A recent report shows that the number of apps in the Google Play
Store has risen from 16 thousand in December 2009 to more than 2 million in February 2016.
Notably, the mobile data traffic amount has reached 3.7 exabytes per month in 2015.
However, the increase in the number of applications is highly impaired by the prevalent
malware. Among different operating systems, Android becomes the most popular platform
due to the open architecture of its system. Unfortunately, smartphones running on Android
system have gradually become the main target of attackers [1] and are infected by malicious
apps. This circumstance reveals the urgency of enforcing mobile app security.

At the same time, academic researchers and commercial antimalware companies have
realized that the conventional signature-based and static analysis methods to detect mobile
malwares are vulnerable. In particular, the prevalent stealth techniques, such as encryption,
code transformation, and environment-aware approaches, are capable of generating variants
of known malware [2] [3]. This has led to the use of behaviour-analysis, anomaly-analysis,
and dynamic-analysis based methods. Since a single approach may be ineffective against
the advanced techniques, multiple complementary approaches can be used in tandem for
effective malware detection. Existing survey papers [4] [5] [6] extensively cover the
smartphone OS security, malware growth, study of anti-analysis techniques, and existing
detection methodologies.

Mobile platforms (i.e. Android) security solutions such as vulnerability assessment, malware
analysis and detection techniques are broadly classified into: 1) static; 2) dynamic and 3)
hybrid. Static analysis methods analyze code without actually running it, hence they are
quick, but they have to deal with false-positives (i.e. when benign is classified as malware).
Dynamic analysis techniques monitor the executed code and inspect its interaction with the

Page 6/38

system. Though time-consuming they are effective against malware obfuscation [7]. Hybrid
approaches leverage the good of both the static and dynamic analysis methods.

Other security solutions can be categorized as rule-based [8] or feature extraction based
machine-learning models [9]. Inappropriate feature selection can degrade the performance of
the model, to generate false-positives. Moreover, the number of features under the problem
must be small sized and effective as an on device anti-malware solution. Feature reduction
methods combined with statistical measures such as mean, standard deviation, chi square,
and haar transforms can be used to identify the prominent attributes responsible for
malicious actions. Learning models can be created by analyzing the features such as
processor, memory usage, battery consumption, system call invocation, network activity etc.
that can be used with the clustering or classification algorithms to predict anomalous
behaviour.

Finally, following is the list of malicious activities that have been reported or can be employed
across mobile devices that are infected with some sort of malicious activities:

• Privilege escalation attacks were leveraged by exploiting publicly available Android
kernel vulnerabilities to gain root access of the device [10]. Android exported
components can be exploited to gain access to the dangerous permissions.

• Privacy leakage or personal-information theft occurs when users grant dangerous
permissions to malicious apps and unknowingly allows access to sensitive data and
ex- filtrate them without user knowledge and/or consent [13] [14].

• Malicious apps can also spy on the users by monitoring the voice calls, SMS/MMS,
bank mTANs, recording audio/video without user knowledge or consent [15].

• Malicious apps can earn money by making calls or subscribing to premium rate
number SMS messages without the user knowledge or consent.

• Compromise the device to act as a Bot and remotely control it through a server by
sending various commands to perform malicious activities.

• Aggressive ad campaigns may entice users to download potentially unwanted apps
(PUA’s), or malware apps [11].

• Colluding attack happens when a set of apps, signed with same certificate, gets
installed on a device. These apps would share UID with each other; also any
dangerous permission(s) requested by one app will be shared by the colluding
malware. Collectively, these apps perform malicious activities, whereas, their
individual functionality is benign. For example, an app with READ_SMS permission
can read SMS messages and ask the colluding partner with INTERNET permission to
ex-filtrate the sensitive information to a remote server.

• Denial of Service (DoS) attack can happen when app(s) overuses already limited
CPU, memory, battery and bandwidth resources and restrains the users executing
normal functions.

2.2 Mobile Data Protection and Privacy Preservation Techniques

Mobile devices equipped with powerful sensing, computing and networking capabilities have
proliferated lately, ranging from popular smartphones and tablets to Internet appliances,
smart TVs, and others that will soon appear (e.g., watches, glasses, and clothes). One key
feature of such devices is their ability to incorporate third-party apps from a variety of
markets. This poses strong security and privacy issues to users and infrastructure operators,
particularly through software of malicious (or dubious) nature that can easily get access to
the services provided by the device and collect sensory data and personal information.

Page 7/38

We now briefly describe the four major techniques or/and frameworks that have been widely
used in the literature to provide protection from data loss and leakage, and privacy for
sensitive user data usage specifically in Android platforms:

• Android source code modification: Android’s source code is openly available and this
makes it easy to implement security extensions by modifying the Operating System
directly. Doing so allows researchers to alter significantly the existing system and is
the most flexible option among the existing ones.

The Android ecosystem is getting mature; however, its permission model does not
show signs of moving towards more fine-grained permissions. In fact, around 44.8%
of the Apps have been found to request permissions that they do not need, thus
violating the least-privilege principle [16]. This, combined with lack of flexibility in the
security model configuration, is what led researchers to propose several Android
security extensions. In [12] the authors describe CRePE, a context-aware system
capable of enforcing fine-grained policies in Android phones. The context is defined
as a set of variables such as position, time, light, etc. This approach is interesting but
makes a limited use of sensors, requires the user (or a third-party) to manually define
a set of rules and doesn’t take into account interaction of the user with the device.

The automatic use of context tracking to dynamically switch security profiles has been
investigated in MOSES [17]. This work introduces the concept of “mode of use” and
security profiles to enforce different policies for accessing applications and data.
Switching profiles doesn’t require user intervention but the system still requires the
user, or a third-party, to provide the profile definitions.

In order to reduce the need for pre-defined policies, [18] introduces a context-aware
and adaptive security framework for Android which makes use of sensors data to
inform a user about whether a requested action poses a low or a high security risk.
They model the risk assessment as a Multi-criteria Decision Making problem and use
Analytic Hierarchy Process to deal with it. This system could be used to bypass the
need for user-defined policies, but the authors don’t consider user awareness in their
model.

• Firmware Modification: A less invasive technique when it comes to implementing
security extensions to the Android OS is firmware modification. This technique
involves modifying some files on the system to extend the capability of the OS without
flashing a complete ROM. The two main drawbacks are that root privilege is required
and that heavily-customized ROMs may network well together with the extension.
Still, this approach usually works on a wide range of devices without requiring
changes to the source code and is therefore an interesting method.

DeepDroid [19], a dynamic enterprise security policy enforcement scheme, allows for
the definition of fine-grained context-based policies. Their approach is based on the
dynamic instrumentation of both Dalvik and Native code. In addition to the ordinary
information about the permissions requested by an App, it can extract extra
information (e.g., an URL associated with an http request). Being targeted at
enterprise, DeepDroid requires a pre-defined set of fine-grained policies to be
effective. Moreover, it fails to consider the user interaction and to exploit user
feedback.

Page 8/38

• Application Repackaging: Application repackaging is a technique which bypasses
completely the need to modify the Android source code or the firmware installed on a
device. Instead of extending the security model of the operating system, repackaging
works by modifying the Apps before installing them. Hooks and policy enforcement
logic are injected into the App binaries and therefore systems using this technique do
not need to adapt the Android OS to their needs. The main drawback of repackaging
systems is that the security guarantees are only as good as the tool that analyses
and repackages the Apps. If a malicious App is obfuscated well enough, it could
prevent the hooks from being inserted into its code, thus making the system useless.
Aurasium [20] is an example of this technique.

• Sandbox-based approaches: Boxify [21] leverages Android’s isolated processes to
run applications in a sandbox. A key advantage of this work is that it doesn’t require
any system nor application modification as it is implemented as a normal Android
application. As most systems it suffers from the lack of kernel support for policy
enforcement, as that would require custom kernel extensions. Moreover, the authors
themselves acknowledge that Boxify requires a wide set of permissions to be able to
provide them to the sandboxed Apps. This could be exploited by malicious Apps due
to the fact that Android doesn’t provide any mean to drop permissions at runtime.
While being an interesting general purpose Access Control mechanism, the authors
don’t provide information about applications of their system. Another novel approach
is introduced by [22] with the FlowFence system. FlowFence performs the equivalent
of taint analysis by making data and control flows of the Apps explicit. This system is
targeted at IoT security, but its core concepts could also be applied to the Android
OS.

2.3 Security in NFC/RFID based communication channels

Today, we use contactless smart keys to unlock our cars, even start the engine without
inserting the keys. This is one of the many industrial applications which grant services or
privileges based on the physical proximity between the communicating devices. These
industrial applications uses the most popular short range communication technologies called
Radio Frequency Identification (RFID) and Near Field Communication (NFC) for establishing
contact between the communicating pairs. Other widely used applications that use short-
range contactless smart cards based on RFID or NFC includes supply chain management, e-
passport, access cards (such as building, parking, highway toll fee collection and public
transports), medical implants, and Point-of-Sale (PoS) systems [23].

Unfortunately, due to the inherent weaknesses in underlying wireless communication, the
RFID/NFC systems are exposed to a wide variety of security and privacy attacks. Thus, it
subverts the security and usability advantages provided by these authentication systems. In
particular, so-called relay attacks [24] [25] are one of the many distance hijacking attacks that
exploits the radio communication technology of RFID/NFC systems. In relay attacks, to
impersonate a victim’s card within the proximity to the reader, a proxy device (or often
referred to as ghost) which emulates a contactless smartcard is placed near the reader. On
the other end of the communication point, a mole (or often referred to as leech) which acts as
reader is placed nearby the victim card. The proxy forwards all the messages to the mole
which acts as a fake of an authentic reader to the victim card. With respect to the FC-
Scanner application, the relay attacks could make a FC-Scanner to scan a SmartTag even in
the cases, where, the owner of the smartphone is away from the product that carries the
SmartTag. This could be done without the user knowing about the attack. Using relay
attacks, an adversary could perform too rapid scanning, and it can also disturb the correct

Page 9/38

functionality of the context-based service composition applications running on the TIS
platform by feeding it the incorrect context. The distance between such a proxy and mole can
be increased as far as the communication delay is kept sufficiently short. Example instances
that show wide existence of relay attacks are, in [26], where authors showed a successful
relay attack over more than 300 miles, and in [24], where authors demonstrated relay attacks
on passive keyless entry and start for over 50 meters. Further, in [27], successful relay
attacks over more than 110 meters are demonstrated using three NFC smartphones.

2.4 Discussion on Related Work

The focus of TagItSmart is on the objects tagged with the SmartTags and the resulting
information about the objects and the surrounding environment that can be retrieved through
FC-Scanners. The collected information is then used to provide the specific services and at
the same time to create other innovative services for the customers. Hence, it requires
ensuring the security and reliability in the usage of the FC-Scanner enablers. In the related
work section, we have discussed the most popular security threats and their corresponding
state-of-the-art solutions with respect to the security of mobile applications and privacy of
user data, both residing on the mobile devices. The techniques discussed include, mobile
malware detection, ensuring security and privacy of sensitive user data, and the reliability
and security issues with the communication channels. These security and privacy measures
are required because the FC-Scanner application will be running on the user mobile devices
and it will be operating on the sensitive user data (i.e., camera data, GPS etc.) along with the
access to Internet connectivity. Thus, an adversary could exploit the vulnerabilities in the: (i)
underlying OS, (ii) applications running parallel to FC-Scanner, (iii) FC-Scanner software,
and (iv) communication channels used for the communication with the SmartTags and TIS
platform.

TagItSmart takes these existing security techniques and concepts as its starting point, with
extensions defined to meet the security and privacy requirements coming from its overall
implementation system as well as from its specific use-cases. To this end, we research and
develop various security solutions to ensure the secure usage of the FC-Scanner enablers.
Our solutions cover an array of security threats that could potentially harm the working
mechanisms of an FC-Scanner. We start with the novel technique that protects the sensitive
data from being misused by a malicious FC-Scanner application via the use of sandboxes.
As there are various malware detection frameworks available in the literature, we take a step
further, and we propose stealthier and modular malware analysis architecture that is robust
against advanced malware attacks. We further discuss the methods that can be used for
ensuring the protection from adversaries targeting the communication channels that are used
in the TagItSmart system for accessing the data from SmartTags and FC-Scanners.
Furthermore, to ensure the authenticity of the FC-Scanner application, we propose the
possible use of large scale software attestation technique. Finally, we propose various
techniques to ensure the security and privacy of user data (in terms of data loss and
leakage) by using context-aware access control techniques.

Page 10/38

Section 3 - Secure and reliable scanning

In this section, we present a new sandboxing technique that ensures the correct behaviour
and functionality of the FC-Scanner application. Our approach ensures that the functionality
of FC-Scanner app, while it accesses the sensitive data, remains unaffected in the presence
of a strong adversary. We also present a malware analysis framework that helps the mobile
app developers to implement stealthier and modular malware analysis architecture. We show
that our proposed framework could be used to further secure the FC-Scanner application
from possible advanced malwares (i.e., the malwares that could bypass the existing malware
detection frameworks). Furthermore, we discuss the possible use of remote attestation
process for authenticating the FC-Scanner application. Finally, we propose solutions to
ensure secure communication between the FC-Scanner and the TIS platform.

3.1 System level security

In this section, we investigate and design various techniques that will help us to ensure: (i)
the correct behaviour of an FC-scanner application while operating on sensitive data which is
either extracted from SmartTags or from mobile sensors, and (ii) the integrity of the FC-
Scanner application against malware and code-injection attacks. A mobile device running a
malicious or compromised FC-scanner software may risk data modification attacks (i.e., the
FC-scanner’s extracted data from SmartTag will not match with its send data to TIS platform)
and data leakage attacks (i.e., send users’ sensitive data to third party), thus threaten user
privacy and TIS functionalities.

3.1.1 Sandboxing Techniques

Current smartphone frameworks use permission-based access control for data sources and
sinks, but they do not control flows between the authorized sources and sinks. In particular,
these frameworks only support permission-based access control on sensitive data, which is
ineffective at controlling how apps use data once they gain access. This method has already
proved to be inadequate, as is evident from the growing reports of data-stealing malware in
the smartphone [28] and browser extension spaces [29], [30]. The fundamental problem is
that users have no choice but to take it on faith that an app will not abuse its permissions.
Instead, we need a solution that forces apps to make their data use patterns explicit, and
then enforce the declared information flows, while preventing all other flows.

Let us consider, for instance, a barcode scanner app such as the FC-scanner. This app
obviously needs the CAMERA permission to scan barcodes and QR codes along with the
access to the GPS data. It also needs the INTERNET permission to search information on a
code. These are all legitimate uses, and thus permissions are required, but a hypothetical
malicious barcode app could also misuse the granted permissions to send all the user data
to a remote collecting server without user consent. To address this misbehaviour of apps, a
system is needed that requires consumers of sensitive data (i.e., in this case, a mobile
application) to declare their intended data flow patterns, which the system can enforce with
low overhead, while blocking all other undeclared flows.

3.1.1.1 FlowFence: Operating on Sensitive Data via Sandboxes

We propose a practical data protection system called FlowFence, which provides a
framework for an alternative permissions system for mobile OS, in the form of a trusted
service that helps apps operate on sensitive data safely, in a manner specified by the

Page 11/38

developer, while allowing users to monitor or prevent the flow of sensitive information out of
the device. FlowFence achieves this by explicitly embedding data flows and the related
control flows within app structure, thus ensuring that an app is completely isolated from the
sensitive data it operates upon, while still allowing the app to perform operational access on
the data. FlowFence allows the app developer to define his own operations on private data,
and provides a safe and isolated environment (referred as a sandbox) to execute those
operations, while never disclosing actual sensitive data to the application.

The results of the operations on sensitive data are provided to the app in the form of a token,
without disclosing the sensitive data itself. Tokens can be used for subsequent operations
within FlowFence’s safe execution environment. FlowFence tracks the permissions used in
generating each token at runtime. Users can define a policy that restricts dangerous
combinations of permissions, without hindering safer combinations. For example, GPS data
or user contact data could be restricted from being sent over the network by the app, while
the app could still send the scanned code to the TIS platform, or retrieve other information
from the network. In short, FlowFence allows:

• an app developer to execute code on sensitive data safely, with more assurance that
the data remains protected, by preventing or detecting flows of sensitive data with
harmful combinations of permissions.

• the user to monitor the flow of sensitive data to off-device destinations.

• the user or an app developer to define a policy that specifies which combinations of
permissions can and can't be used.

3.1.1.1.1 FlowFence Overview

Our proposal, FlowFence, offers a trusted component that manages sensitive data,
preventing apps from accessing the data directly, while allowing them to use the data in their
code. One way to do this would be to use a simple delegation pattern, where the trusted
service directly exposes the functionalities needed. However, this solution would imply
having a public API on the trusted component able to satisfy all possible usages of private
data in an Android application, which seems a requirement very difficult to satisfy.

Instead of designing a “good enough” API, FlowFence allows app developers to define their
own operations on private data, in the form of a SODA (Sensitive Operation Defined by the
App) - a self-contained, stateless function that produces an output from specified inputs. Our
system would then execute this SODA within a trusted and isolated environment, while
returning the result of the computation as an opaque handle to the app. The app cannot
access the results directly, since it only gets back a handle, but it can pass the handle to
subsequent SODAs for further operations on sensitive data. Inputs to a SODA can be
ordinary data or handles, and the result returned is arbitrary, but is always returned as a
handle. The FlowFence service keeps tracks of the real values associated with the handles,
as well as the permissions used in building up the handle. Only the disclosure of the real
data that is embodied in the handle is subject to policy, not the operations on the data itself.

This achieves four key goals:

• access to private data is kept separate from the application itself;

• the transformations over private data are defined by developer;

• since access to private data is done in a safe and controlled environment (via a
trusted service), we can precisely track the combination of permissions used by an
app when private data is externalized.

Page 12/38

• permissions from the user are not needed for sensitive data accessed via FlowFence,
except when sensitive data is desired to be sent out of the trusted service, e.g., to the
network, in unencrypted form.

The FlowFence service offers functionality to declassify handles and output raw values to
destinations such as the device's display or the network (sink); since it is the trusted
component itself that does this declassification, and since a handle carries all the
permissions used in its computation, FlowFence can control and monitor these flows via
policy. Such control and monitoring is simply not possible with the standard Android
permissions system that only has knowledge about the data (and sinks) that will be available
to the app.

3.1.1.1.2 FlowFence Architecture

FlowFence uses a client-server model, where the client is an Android app (i.e., FC-Scanner)
and the server is a service that exposes functionality to execute SODAs on sensitive data.
An app requests the execution of a SODA via a blocking inter-process communication (IPC)
call to the service. The app sends the SODA and any required additional parameters as
arguments of the call to the service, and then waits for the result from the service. The
FlowFence service tracks usage of sensitive data during the SODA's execution, checking
against a policy whether those uses are allowed or not.

Figure 1 FlowFence: Architecture Overview

The architecture of FlowFence is illustrated in Figure 1. In particular, the service is composed
of three main Android services:

• Sandbox pools, which realizes the isolated environment for the SODA execution;

Page 13/38

• DataGateway service, used to access private data from the Sandbox;

• FenceService, the service which encapsulates the other two and is called by the
application.

We use the DataGateway service as a way to keep the Sandbox isolated and prevent an app
from accessing sensitive data directly. Apps need to use the DataGateway service to retrieve
or output the sensitive information. Thus, at the DataGateway, we can monitor and track the
sensitive data (“sources”) accessed by a SODA as well as where this data flows to (“sinks”).

FenceService receives the calls from an app to execute a SODA. It then selects a Sandbox
from a pool of identical sanitized sandboxes. The architecture uses a pool of sandboxes to
scale better in case of multiple concurrent requests and for resiliency. The parameters given
to FenceService for the SODA call are passed by value into the Sandbox - this prevents
SODAs from modifying parameters to leak data from the sandbox. When a SODA has
finished executing, its result is then returned to FenceService, which checks (with a call to
the DataGateway service) the sources and the sinks accessed by the SODA. FenceService
stores the result and returns an opaque handle to the result back to the app. FenceService
also calculates the taint of the SODA, starting it at the union of the taints on the inputs, and
adding any inputs used directly by the SODA as it executes. The final taint of the SODA is
also associated with the returned handle.

If the SODA accesses a sink (e.g., the network), policy is checked to see if the access should
be logged or prevented. For example, if the taint set when the network is accessed includes
the camera, which implies that there is a potential flow from an image acquired by the
camera to the network.

The results from the SODAs are returned in the form of an opaque handle, called
FenceToken. A FenceToken is composed of two fields: the encrypted result of a SODA
execution, and a taint field that tracks the cumulative set of permissions used (i.e., sensitive
sources used) to obtain the token. FenceService also adds a digest (generated with a
cryptographic hash function) to the token, in order to verify the integrity of the token if used
as input in subsequent computations. By encrypting information and returning it to the caller
application, we can offload the data management to the application itself, which can use this
FenceToken as input for other SODAs or simply store it. In the future, we will avoid the cost
of encrypting computation results by keeping them in the FenceService (up to a maximum
amount of time) and only returning a symbolic token to the application. Encrypted values will
be available to applications only with an explicit request.

To prevent data leakage between SODAs with different taints, SODAs cannot store data
between executions, except by returning that data at the end of the execution. FenceService
also offers functions to display information on the screen (e.g., via dialogs or toast
notifications). Depending on whether one trusts Android to display sensitive information
securely, these may or may not be subject to policy. FenceService also includes operations
to declassify information and send it through a sink (e.g., sending GPS coordinates to the
network), subject to policy. These are needed to keep the app functional while being able to
track or prevent risky flows of sensitive data.

Apps can get operational access to sensitive data without requesting access to the raw
sensitive data. This potentially reduces the number of permissions that apps need to get
approved from users.

Page 14/38

To use FlowFence, the developers of FC-Scanner app needs to write a SODA script that will
contain all its operations that this app wants to do on sensitive user data. Inside the SODA,
the developer can retrieve sensitive data with calls to the DataGateway service. The
FenceToken resulting from a SODA execution can be displayed by calling FenceService.
The end user would simply need to install the FlowFence application (and optionally define a
policy) to use the system.

3.1.1.1.3 FlowFence Working Methodology

When the service executes the runSODA method, it retrieves the calling application package
name. The service then generates an IBinder object to be used to identify this SODA.
Subsequently, it chooses a clean Sandbox from the pool and calls the Sandbox method ex-
ecSODA(String sourceAPK, String sClass, Map inputTokens, Bundle args,
IBinderauthToken, IBinderDataGW) (number 2 in Figure 2). Inside this method, the Sandbox
binds to the DataGateway service, after retrieving a proper binder from the IBinder it receives
as argument. The Sandbox is implemented as an Android service with the property
isolatedProcess set to true. Such a service runs in a separate process with no permissions of
its own, and the only communication possible is through the service API. Since the only
binder object that is passed to the Sandbox is the DataGateway binder, the only way to
retrieve or send out sensitive information is by calling the DataGateway service. The isolation
of the process prevents any unapproved I/O communication, even if the SODA is written
poorly.

Figure 2Sample execution of a FlowFence

The Sandbox loads the class implementing a SODA from the caller's APK (number 3 in
Figure 2). We then use Java reflection to instantiate a new object of the SODA class, and

Page 15/38

execute the method that runs the SODA. The result of this execution will be returned to
FenceService as a String.

The DataGateway service is a local service that can only be called inside FenceService
application. This service acts as interface for the SODA to gather sensitive data, e.g., a
developer would call datagw.getLastLocation(IBinderauthToken) to get the current location in
a SODA (number 4 in Figure 2). The DataGateway will call the Android LocationManager
(number 5in Figure 2) and retrieve the desired data, which will be returned to the SODA. The
authToken is necessary to identify the SODA. Every call made by a SODA sets one or more
permission flags in the DataGateway. This allows tracking every data access during the
SODA execution and applying security policy. The DataGateway service also offers a
registration method to FenceService. During the registration, the DataGateway acquires a
token that is used to authenticate to FenceService for subsequent calls.

At the end of the execution of a SODA, FenceService will make a call to the DataGateway
method intretrievePermissionsUsed(IBinderauthToken) to retrieve the permissions used by
that SODA, using the previously generated IBinder as an identifier (number 6 in Figure 2).
FenceService encrypts the result of the SODA execution and creates a new FenceToken.
The retrieved permissions are added to the permissions required by all the FenceTokens
used as input to the SODA, and result in the final set of permissions associated with the
SODA and the returned FenceToken. This FenceToken object contains the encrypted result,
the permissions used by the SODAs and a digest of the contents added by FenceService to
verify the token integrity. The token is returned (number 8) to the calling app, where it can be
stored, used as input of another SODA or be displayed by calling a FenceService output
method.

FlowFence uses notifications and dialogs as a way to display information on top of another
application without disclosing sensitive data. The ability to display information on top of the
calling apps without disclosing sensitive data will be added in the future, either by using
Access Control Gadgets (like the ones described in [31]) or by drawing on top of the app
window using available Android APIs.

3.1.1.2 Stealthier and Modular Malware Analysis Sandbox

Mobile devices can access and store personal information (e.g., location, photos, and
messages), and thus, are appealing to malware authors. One of the most promising
approaches to analyse malware is by monitoring its execution in a sandbox (i.e., via dynamic
analysis). The majority of malware sandboxing solutions for Android rely on an emulator,
rather than a real device. This motivates malware authors to include runtime checks to detect
whether the malware is running in a virtualized environment. In that case, the malicious app
does not trigger the malicious payload. The presence of differences between real devices
and Android emulators started an arms race between security researchers and malware
authors, where the former want to hide these differences and the latter try to seek them out.
In this section, we present Mirage, a malware sandbox architecture for Android focused on
dynamic analysis evasion attacks. We designed the components of Mirage to be extensible
via software modules, to build specific countermeasures against such attacks. To the best of
our knowledge, Mirage is the first modular sandbox architecture that is robust against
sandbox detection techniques. As a representative case study, we present a proof of concept
implementation of Mirage with a module that tackles evasion attacks based on sensors API
return values.

Page 16/38

3.1.1.2.1 Motivation

A malware could escalate privileges by exploiting vulnerabilities in the operating system, new
threats arise also from apps that run unprivileged. Malware for Android often harms users by
abusing the permissions granted to it. For example, malware can cause financial loss by
leveraging features such as telephony, SMS and MMS, while with access to camera,
microphone, and GPS it can turn a smartphone into an advanced covert listening device.
Moreover, the leak of confidential data, such as photos, emails and contacts, threatens
user’s privacy as never before. Attackers usually spread malware infections by repackaging
an app to contain malicious code, and by uploading it to Google Play (i.e., the official
marketplace) or alternative marketplaces. A possible approach to reveal malicious Android
apps consists of analysing them one at a time. However, this may be fighting a losing battle:
Google Play counts more than 2.2 million apps today.

Similar to other mobile apps, the FC-Scanner could also be used to infect the user mobile
device. For instance, an adversary could insert some malicious code using the repackaging
technique and publish the FC-Scanner at Google Play or other similar marketplaces.
However, the malware analysts will be examining all the uploaded apps for possible
malwares by using static analysis and dynamic analysis techniques. During such analysis,
the sample (i.e., an app submitted for the analysis) runs in a sandbox. A sandbox is an
isolated environment where malware analysts can execute and examine untrusted apps,
without risking harm to the host system. Unfortunately, sandboxes run on top of the
emulators (such as QEMU and Genymotion) which present some hardware and software
differences (i.e., artefacts) with respect to real devices, which can also be recognized at
runtime by apps. Artefacts are imperfections that make a sandbox distinguishable from a real
device. By detecting these artefacts, the malicious FC-Scanner can easily recognize whether
it is running or not on a real device. Thus, a malicious app can exploit emulator detection to
evade dynamic analysis and show a benign behaviour, instead of the malicious payload.
Relying on such mechanism, malware authors might spread a new generation of malicious
apps, which they would be hardly detectable with current dynamic analysis systems.

3.1.1.2.2 Proposed Architecture

To address the aforementioned security threat, we propose Mirage, a malware analysis
sandbox which is robust against evasion attacks. One of the key features of Mirage is that it
is composed of processes that execute inside the operating system, and software that runs
outside the emulator. This feature allows Mirage to be not tied to a specific analysis system.

Page 17/38

Figure 3Mirage architecture: Components and their interactions

In Figure 3, we illustrate the four main components of Mirage which are the Methods Hooking
Layer, the Events Player, the Coordinator and Logger, and the Data Collection App. The
details of these four components along with their functionality and interaction with each other
and with the system are as follows:

• Methods Hooking Layer: The first component of Mirage architecture is the Methods
Hooking Layer. This component executes as a process in the Android operating
system. The main function of Methods Hooking Layer is to intercept calls to methods
of Android API and manipulate their return value. Such manipulation occurs just
whenever the original returned value may reveal the presence of the underlying
emulator. Relying on this component, we can address the majority of behavioural
differences. As an example, we can return a well-formed telephone number when a
sample asks for TelephonyManager.getLine1Number(), instead of the default one
(which in an emulator always begin with 155552155, followed by two random digits).
Since it is possible to predict which artefacts the Methods Hooking Layer introduces,
we can use such component to hide them as well. Moreover, hooked methods should
perform minimal computation to reduce the risk of detection via computational timing
attacks.
The code of the Methods Hooking Layer executes directly on a compiled operating
system image. Hence, such code is “debuggable” without modifying and compiling
every time the Android source code. In compliance with the modularity of sandbox
components requirement (such as “stealthiness” and modularity of the components,
consistency of bogus data, monitor known evasion attempts, and no modifications to
the Android source code and emulator), the modular sub-architecture of the Methods
Hooking Layer makes it flexible with respect to changes. The Methods Hooking Layer
divide hooks by target artefacts, thus they are editable without touching the other
hooks. Moreover, such sub-architecture allows researchers to share their proof of
concepts or mature modules in a common framework. However, system constants
expose some artefacts as well (e.g., the ones contained in A ndroid OS Build).

• EventsPlayer: Real mobile devices generate many events in response to external
stimuli, hence hooking methods calls and manipulation of their return value is not
enough to simulate such asynchronous behaviour. In order to make our runtime
environment as realistic as possible, we need the Events Player replay recorded or
generated streams of events in the emulator. Besides the touch screen, the main
sources of events are sensors (e.g., accelerometer, thermometer) and multimedia
interfaces (e.g., camera, microphone).

Page 18/38

The Events Player replays tidily the streams of events, respecting their order. The
accuracy of values domain is crucial to build a stealthy sandbox. Indeed, the sandbox
would be vulnerable to detection and fingerprinting, if the injected events do not
resemble the ones that come from a real sensor (e.g., they are out of range).
Similarly to the Hooking Layer methods, the Events Player uses only tools from
Android, Android SDK and emulators, without requiring any modification.

• Coordinator and Logger: The Coordinator and Logger, as it is clear from its name,
has two roles: to coordinate and to log. Its first role as coordinator consists in
ensuring consistency of bogus data, which the other components inject into the
emulator. Whenever the Methods Hooking Layer loads a new module, or when the
Events Player opens an events stream, we have to instruct the coordinator on how to
manage such hooks or events stream in accordance with the other modules. A deep
study of the interaction between Android features lead to a set of rules, which the
coordinator feature is able to interpret. For example, data that sensors acquire are
interdependent (e.g., accelerometer and GPS). Moreover, actuators on the device
(i.e., the screen, the notification LED, the ash, speakers and the vibrator) can also
influence data that sensors record (e.g., speakers may influence the microphone).
The second role of this component consists in logging what happens inside the
sandbox. This logging feature of the Coordinator and Logger is useful to have an
insight on which detection techniques the samples are probably exploiting. In addition
to that, the logging feature is even more useful to signal whenever a sample attempts
to use a known technique which the sandbox is not able to cope with yet. In this way,
Mirage is able to monitor all possible evasion attempts. The Methods Hooking Layer
reports to the Coordinator and Logger every suspect or evidence about the analysed
sample. The Coordinator and Logger could manage the analysis process entirely. As
an example, this component could handle tasks such as sample submission or the
presentation of results.

• Data Collection App: The task of the Data Collection App is to collect information
from real mobile devices. Then, the Coordinator and Logger will inject such
information into the Methods Hooking Layer and into the Events Player. The goal of
this process is to hide artefacts in the emulator. Indeed, acquiring data from different
smartphones and tablets models allows creating emulator instances with different
characteristics. At the same time, this approach also reduces the risk that malware
authors detect a particular image. The app is also responsible of capturing events
streams on the real device, and stores them in a compact and easy to replay
representation. The Data Collection App can retrieve information from real mobile
devices available in a laboratory, but a real advantage would be to collect data with
crowd-sourcing. On one hand, in a laboratory scenario researchers could ask their
colleagues or students to kindly give their help by installing the app and uploading
data. On the other hand, in a crowd-sourcing scenario companies could include the
Data Collection App in their mobile app. Adopting a freemium pricing strategy,
companies can freely distribute their software for free in exchange for data collected
from the device. With an app with a wide user base, it is also possible to acquire
\disposable" data on demand. As an example, an antivirus app may offer to the user
an extension of the license or a month of premium features, if she agrees to share
with the company her sensors events for the next ten minutes. In both scenarios, we
highlight that data collection must be respectful of the privacy of the participants, e.g.,
applying perturbation on collected data [10]. Such perturbation is meant to alter
information in such a way that avoids exposing the contributing user's identity (e.g.,
biometrics, habits) and, at the same time, preserves the characteristics of the device.

Page 19/38

3.1.1.2.3 Tackling Evasion Attacks with Mirage

In this section, we start with artifacts discovery and analysis, and end with the
implementation of the Mirage. Artefacts are imperfections that make a sandbox
distinguishable from a real device. To put ourselves in attacker's shoes, we studied the
Android sensors API to find out which sensors artifacts malware could leverage to evade
dynamic analysis.

Device getName getVendor getFifoMaxEventCount

Real BMI160
accelerometer

Bosch 5736

QEMU Goldfish 3-axis
Accelerometer

The Android Open
Source Project

0

Genymotion Genymotion
Accelerometer

Genymobile 0

Table 1 Example of return values for Nexus 5X accelerometer in real devices, and vanilla
emulators (i.e., QEMU and Genymotion)

In our analysis, we considered the sensors embedded in real devices and the ones simulated
by virtual devices. For each sensor, we called all methods available in the Sensor class. As
an example, in Table 1 we show the discrepancies in terms of return values for
accelerometer methods on real and emulated Nexus 5X. Malware authors can rely on those
discrepancies to develop simple detection techniques (a single conditional statement is
enough). We refer to these techniques as static heuristics, since they exploit an artifact due
to the Android API, which is not related to events streams. The accelerometer, thanks to its
wide availability, is particularly well suited for broad-spectrum heuristics.

Android
sensors

Portrait Landscape

getStringType values[0] values[1] values[2] values[0] values[1] values[2]

accelerometer 0 9.776 0.813 9.776 0 0.813

magnetic field 0 0 0 0 0 0

light 0 n/a n/a 0 n/a n/a

pressure 0 n/a n/a 0 n/a n/a

proximity 1 n/a n/a 1 n/a n/a

relative
humidity

1 n/a n/a 0 n/a n/a

Table 2 Constant values produced by sensors in QEMU, grouped by screen orientation

In the literature, researchers already pointed out the feasibility of dynamic heuristics, in which
they exploited sensors events that emulators generate [49]. We investigated further: for each
real mobile device at our disposal, we registered callback methods to receive changes in
sensors state. By applying the option SENSOR DELAY FASTEST, we got those states as
fast as possible. In our experiments, we observed that collecting an incoming stream of
events for ten seconds is enough for our purpose. We collected sensors data from real
mobile devices in three different scenarios: lying on a table, while typing and leaving them in
a pocket while walking. Then, we repeated the data collection task on QEMU and

Page 20/38

Genymotion emulators. Such emulators allow only two modes of screen rotation: portrait and
landscape.

During our initial experiments, we were able to observe some differences between real and
emulated motion sensors. In real mobile devices, we noticed that motion sensors (e.g., the
accelerometer) quickly oscillate among a small range of values, even when the device is
lying on a flat surface. In emulators, we noticed that it is possible to stimulate the
accelerometer by changing from landscape to portrait mode. In contrast, without rotating the
screen, each motion sensor in emulators produces the same value. Table 2 records the
constant values that each sensor in QEMU produces. It is worthy of note that some sensors
in QEMU produce values only along one axis, so in Table 2 we mark the cells related to the
other two axes as n/a.

In order to tackle the evasion attacks based on mobile sensors with Mirage: (i) we included in
our Data Collection App the code we used for artifacts analysis, and (ii) we patched the
discrepancies in return values using information we obtained from the Data Collection App.

To address static heuristics, we added to the Methods Hooking Layer our knowledge about
the characteristics of real sensors. In fact, the Methods Hooking Layer can intercept methods
calls directed to the Sensor class, returning values that we collected from sensors of a real
device. Xposed executes a method before (pre-method) and after (post-method) each
method hooked. The pre-method can evaluate and alter the arguments, or it can return a
custom result. In our implementation, we used only post-methods. In fact, first we allow the
original methods to execute, then we inspect the sensor type, and finally we alter its return
value accordingly. After defining a hook for each method of Sensor class, for every available
sensor type, Mirage is able to mimic a real device.

For the evaluation of our proposal, we will be developing a SandboxStorm app. Such app
includes the aforementioned static and dynamic heuristics. The SandboxStorm app could be
considered as a genuine mobile app such as FC-Scanner, which contains malware code
along with the capabilities that helps it to detect a difference between an emulator and a real
device. Hence, it can fool the existing emulators during dynamic malware detection process.

3.1.2 Remote attestation

Large numbers of smart connected devices, also named as the Internet of Things (IoT), are
permeating our environments (homes, factories, cars, and also our body—with wearable
devices) to collect data and act on the insight derived. Ensuring software integrity (including
OS, apps, and configurations) on such smart devices is then essential to guarantee both
privacy and safety. A key mechanism to protect the software integrity of these devices is
remote attestation: A process that allows a remote verifier to validate the integrity of the
software of a device. This process usually makes use of a signed hash value of the actual
device’s software, generated by dedicated hardware. While individual device attestation is a
well-established technique, to date integrity verification of a very large number of devices
remains an open problem, due to scalability issues.

In this section, we will investigate possible directions for the use of Trusted Platform Model
(TPM) 2.0 to develop a secure application for smartphones. Increasing adoption of
smartphones in recent times has begun to attract more and more malware writers towards
these devices. Among the most prominent and widely adopted open source software stacks
for smartphones is Android that comes with a strong security infrastructure for mobile
devices. However, as with any remote platform, a service provider or device owner needs

Page 21/38

assurance that the device is in a trustworthy state before releasing sensitive information to it.
Trusted Computing (TC) provides a mechanism of establishing such an assurance. Through
remote attestation, TC allows a service provider or a device owner to determine whether the
device is in a trusted state before releasing protected data to or storing private information on
the phone. However, existing remote attestation techniques cannot be deployed on Android
due to the unique, vm-based architecture of the software stack. Therefore, we will first
investigate novel solutions to perform software attestation on remote IoT devices as we
believe that similar solutions could later be used for authenticating the mobile applications
that runs on smartphones with embedded TPM chips.

3.2 Communication reliability and security

In this section, we discuss the security strategies that we will apply on how the FC-scanner,
namely a mobile app running in a specific device, securely interacts with services and
repositories in the backend.

3.2.1 Vulnerabilities in the FC-Scanner to backend communication

Because the Internet is an open network and security was not included by design in the
original IP layer, additional protocols must be used at the transport layer as well as at the
application layer. This, to guarantee that two communicating devices keep communicating
with the same devices (i.e., prevent hijacking). Furthermore, still at the transport layer, it must
also be guaranteed that the data that two devices exchange cannot be intercepted, read or
modified during the exchange. This service is provided by Transport Layer Security
protocols, or TLS, and its predecessor, Secure Socket Layer protocols. However, while
security at the transport layer secures the point-to-point communication between two devices
in an IP-based network, of which the Internet is the most prominent, TLS does not say
anything about the legitimacy of the communication at the application level. In the context of
the FC-Scanner, TLS would make sure that the mobile device and the backend are securely
connected, and even if the communication is intercepted by a third party, all that the third
party would see is seemingly random 0s and 1s. However, how does the backend know that
the FC-Scanner is used by a legitimate owner? Or that the FC-Scanner hasn’t been
compromised and, while the owner is legitimate, the FC-Scanner app tries to open a second
backdoor, to circumvent the security mechanisms that are outlined in this deliverable? This is
why authentication at the application layer is required, which is implemented with API keys.
At the application level, FC-Scanner and backend communicate via HTTP. HTTP is the de-
facto standard on the Web to transfer files in a request-response manner. Each time the FC-
Scanner wants to communicate with the backend, it sends its API key as part of the header
payload.

3.2.2 Authentication and API Keys

Within a mobile device’s space, there are always possibilities of various security threats.
Hence it is important that, should an app be compromised, swift and decisive actions can be
taken to prevent the app from being used. After all, a mobile device could be stolen or
infected by a malware. So, how can it be ensured that an app is legitimately permitted to
communicate with the backend. While there are numerous ways to do this, API keys are an
ideal choice for RESTful services.

An API key is a unique and crypto-secure token given to an application after the
authentication process to which a role is assigned. An API key is the only value that the
mobile application needs to authenticate and authorise a request. The advantage of using
API keys is that personal access credentials (i.e. username and password) are not shared,

Page 22/38

as would be the case with basic access authentication for example. If an API key is
compromised, a new API key can be generated and the compromised API key be
invalidated, without affecting a user account. Furthermore, using API keys prevents cross-
site request forgery attacks, because each individual request is authenticated. The backend
does not keep a state between requests.

Figure 4 Lifecycle of an API key

The backend exposes endpoints to virtual entities as RESTful APIs. Each time anFC-
Scanner makes a request to the backed, the request must be authenticated and authorised
by a valid API key. Based on the API key, the backend determines which resources the
application is permitted to access and the operations applications can perform on those
resources. This is shown in Figure 4. A new API key is created for the FC-Scanner. This API
key is uploaded to an FC-Scanner app. Each time the FC-Scanner accesses the backend, it
uses the API key. The backend will allow the FC-Scanner mobile app to access predefined
resources under well-defined permissions. The API key can be invalidated, for example if the
mobile phone is stolen or the API key is published. An invalid API key cannot be used.
However, all other API keys remain valid.

3.2.3 Secure communication
The open architecture and philosophy of the Internet, which was key for its global success,
means that if two parties want to communicate securely, they must find a way to exchange
keys to establish a secure channel in plain sight. This problem has been solved with a public
key infrastructure, which means that two actors trust a third party, the certificate authority, to
vouch for their identity. Tools are provided for most platforms that implement transport layer
security (TLS) protocols. Users will mostly not be aware that two devices establish a secure
tunnel to enforce communication security enforced using TLS. But TLS establishes a private
and secure tunnel between two applications in an open network, even if the entire
communication, from negotiation, to transmission, to ending transmission is intercepted by a
third party. TLS guarantees the identity of the mobile application and the backend (using

Page 23/38

public key cryptography) and guarantees that the communication cannot be intercepted and
then manipulated.

GET /products HTTP/1.1..Authorization:

<FC_SCANNER_API_KEY>..Content-Type: application/json..Accept:

/..Host: api.fc-scanner-backend.com..accept-encoding: gzip,

deflate..Connection:keep-alive.

Figure 5 HTTP header with FC-Scanner API key

At the application layer, FC-Scanner and backend communicate via HTTP, respectively
HTTS, “S” standing for the secure transportation layer. The FC-Scanner authenticates itself
by sending its FC-Scanner specific API key in the header. An example for such a header is
shown in Figure 5. The backend will verify if the API key provided in the header is valid and if
the request if valid, i.e. is the resource the API key requested within its scope and does the
API key have the necessary permissions.

3.2.4 Role-based authorisation

The backend uses a role-based access control model. The key concepts are scopes and
permissions. Access is managed by creating roles, which assign permissions to a scope:

• Role scope: A scope is a group of zero or more resources (e.g. virtual entities)
• Role permission: Permission specifies the operation that can be performed on

resources.
The role-based access paradigm does assign permissions to users that users assume
through API keys.

Page 24/38

Section 4 - Enhancing security and user privacy based on context
The role of the contextual information is to offer information regarding the situation in which
the user of a service is currently in. This includes physical characteristics of the context (e.g.
location, address, time and hour), as well as technical ones (device model, carrier
information, frequency, hardware information and protocol versions). Miele et al. have
proposed in [46] a contextual model specific to mobile devices, meant to extend data
services by minimizing the amount of information required to be stored on phones.

In PaaSword [45], a complex and updatable semantic model [47] is available to a central
application owner, allowing him to define complex rules for allowing the execution of certain
actions or services. Thus, authentication and authorization mechanisms have been proposed
and developed. The models, subsequently being transformed and enforced dynamically into
a XACML format, allow the straightforward definition of context-based policies; contextual
information is typically location, network, device, usage and pattern related. E.g., requests
between certain time frames and from known geographical locations can be considered valid
or typical for a specific user, while any deviation or reporting frequency, not.

In this section, solutions will be investigated and presented that use the contextual
information collected from mobile sensors (i.e., sensor modalities) or user-defined policies, to
enhance the security of the overall system (i.e., front-end which includes FC-scanner and
SmartTags), and to ensure the proper functionality of all its components. In particular, we
include security and privacy techniques that protect users’ privacy not only against malicious
applications, but also against benign ones (such as FC-scanner) by keeping the user-in-loop
while operating on sensitive data, and context-based security profiles that are associated
with a set of policies to control the access to applications and data.

4.1 Privacy Protection in Mobile Applications

Recent history has shown that the users’ privacy must not only be protected against
malware, but also against benign Applications. In fact, cases have been reported of widely
used Apps requiring too many permissions or leaking user information to their servers
intentionally [32]. To make things even worse, several models of cheap Android handsets
have been found to be transmitting personally identifiable information, including call logs and
the content of text messages, to remote servers [33].

Despite the introduction of several extensions to the Android security model, little attention
has been paid to possible mechanisms able to check whether a sensitive action is intended
by the user or not, based on contextual information. This shortcoming severely limits the
security of a system and its ability to protect users. For example, let us consider the case of a
geo-tagging photo App. Such an App would typically require camera and location information
for legitimate purposes. Moreover, Internet access might be needed to share the pictures
among its users. In this scenario, nothing prevents the App from leaking the user location
continuously while running in background or while the screen is off.

The permission granting process could be improved by using sensors’ data and other
contextual information, thus making it a well-informed task. Examples of such information
could know whether the screen is on/off, the time since last user input, and the presence of
the user in front of the screen or the rotation/position of the phone itself. Permission
enforcement systems should exploit this data to try to block privileged but unsolicited actions
requested by an App, therefore limiting potential privacy breaches.

Page 25/38

4.1.1 User-in-the-Loop Verification System

In order to ensure that the FC-scanner application does not misuse the user data that are
also residing on the same device, we propose the use of “UserLoop”, which is a User-in-the-
Loop verification system for Privacy Protection in Mobile Applications. UserLoop makes use
of sensor data and human feedback to enforce user awareness of sensitive actions
performed by mobile applications. We present the architecture of the proposed system,
describe our prototype implementation and report on the thorough evaluation we run to
assess its performance both with regards to its effectiveness and its runtime footprint.

The concept of context-based access control has already been investigated on mobile
devices by the research community, but no system so far has exploited contextual
information to put the user and its interaction with the device in the centre of the security
model. Moreover, existing systems have a limited definition of context which is mostly static
and is used only to change the set of policies depending on environmental attributes such as
the time of the day or the location of the device. UserLoop, on the other hand, can apply
different policies based on the instantaneous value of any of its contextual variables, thus
adapting automatically to the user’s needs. Furthermore, the UserLoop client App provides
an easy and effective way for the user to detect suspicious Apps which perform sensitive
requests behind his back.

With UserLoop, we achieve a fine-grained control policy over Android Apps by making the
default Android permission model context-dependent. Our system doesn’t require installing
custom ROMs or radical changes to the OS, thus giving it the ability to be deployed on
different devices and different Android versions with minimal to no changes.

4.1.1.1 Architecture

The architecture of UserLoop is shown in Figure 6. UserLoop is composed of three main
modules: an Xposed module named XUserLoop, a service and a client App. XUserLoop is
the Policy Enforcement Point (PEP) and is used to relay Android’s UID-based permission
check to the UserLoop service. The service is itself composed of different modules which
encapsulate its main functionalities. The Logger module is in charge of storing permission
requests together with contextual information in order to provide useful statistics to the front-
end App. The Context Tracker is the module which gathers data from the sensors and keeps
track of the current context. The Policy Manager acquires contextual information from the
Context Tracker and provides XUserLoop with policies to enforce. It also communicates with
the Policy Provider, which is where the policies are stored. Finally, the client App, the user-
facing part of the system, is used to manipulate policies and show the user useful information
on the Apps and their permission requests. The client can also update the UserLoop
configuration whenever the user makes a change to a policy.

Page 29/38

worth noting that as a next step, project developed FC scanner applications will be used for
evaluation.

• Client App -

We provide a front-end app to UserLoop in order to let the user review and tune the policies
shipped by default. Moreover, since we gather statistics about the permission requests, we
are able to show some useful information to let him quickly grasp if an App is suspicious. For
this reason, the UserLoop client App contributes to our security model by giving feedback to
the system.

Table 3Policy set

ID Condition Action

R0 Location when App in foreground, screen on, phone unlocked GRANT

R1 Dangerous permission, App in background DENY

R2 Dangerous permission, no touch in the last 20 seconds DENY

R3 App in foreground, screen on, phone unlocked GRANT

R4 Screen on and unlocked, recent input inside the App GRANT

R5 Screen off, low light DENY

R6 Screen off, low proximity DENY

R7 SEND SMS permission, screen off DENY

R8 CALL PHONE permission, screen off DENY

R9 Non-dangerous permission, screen on, phone unlocked GRANT

For the assessment of our system, we deployed the set of policies defined in Table 3. During
our preliminary testing we found that accelerometer and gyroscope data wasn’t very useful
with regards to our aim of making sure the user is in the loop. This is because the current
iteration of our system uses the instant value from the sensors, neglecting the time
dimension. Further work is required to see if an activity recognition-based approach would
yield better results.

In the initial phase of the security evaluation, we downloaded and installed the Apps on our
test device. We then proceeded by manually opening them and creating accounts where
required. After that, we performed manual testing by opening each App and interacting with
it. In this phase, we modified some contextual values on purpose in order to activate the
policies we deployed. Finally, we rebooted the phone and recorded the activity of the Apps
for two days.

Page 30/38

4.2 Security and privacy based on user context

The previous section detailed an approach for security based mainly on the context of the
phone. In this section, we will provide an overview of security based on the context of the
user currently in possession of the phone. This involves using the smartphone to determine
the context that the user is currently in.

In the early 2000s, much research in the area of activity and context recognition focussed on
using wearable sensors mounted on the body to obtain data. These sensors were often
specifically for one task, such as gait recognition, and were mounted on the body in the
specific place where the most appropriate data for the problem at hand could be obtained.
The advent of the smartphone with it ubiquitous use and multiple sensors has meant that
researchers have focussed on using this device for the opportunistic gathering of sensor
data. A smartphone contains many sensors, such as a microphone, accelerometer and
gyroscope and is usually carried at all times by the user making it an ideal device to gather
information. The smartphone has enabled the vision of ambient intelligence to become a
reality where the goal is to perform context recognition in the background using the available
sensors opportunistically on a smartphone.

4.2.1 Current State of the Art in Context Recognition

Context recognition aims to determine the current context of the user in order to make it
available to applications. The primary types of context awareness are; location, identity, time
and activity. Context-aware applications are able to alter actions of the smartphone or
present options to the user based on the current context. For the context module in the
TagItSmart!, the current environment that the user is in will be the focus of our attention. This
might also include an indication of the current activity of the user.

Research has shown that one of the key modalities for determining the context a user is in is
sound[35]. Sound has been used to determine the activities and context that a user is in over
the course of a day. In locations such as bathroom [36], office and workshop [37], kitchen
[38], and public spaces [39], sound has been shown to be effective at identifying the current
environment. Mesaros et al. [40], performed an evaluation of an ambient sound classification
system for a set of over 60 classes, illustrating the kind of performance that can be achieved.

The determination of the context of a user from their smartphone requires a framework with
several components. For each component, there are a myriad of options which a researcher
can use in order to provide the required performance or determine the required context. The
first component of the framework is the pre-processing of the sound data obtained from the
microphone. Pre-processing involves taking the raw data and transforming them into a
format that can be used by machine learning algorithms. A common method is to separate
the data stream into sections of contiguous data instances, termed windows. These are then
used as the base data to extract relevant features of the sound data. To extract features from
the data there are a myriad of methods that are used such as Mel-frequency cepstral
coefficients (MFCCs).After the data set has been formed from the sound data stream, a
classifier is required to perform classification. Many methods have been used to perform
classification that range from early machine learning methods such as k-nearest neighbour to
state of the art techniques such as deep learning. Dubey et al. [41] aim to identify the mood
of the wearer by unobtrusively recording the ambient sound and then processing the noise
signal and using a C4.5 decision-tree classifier to determine the mood of the user. Chu et al.

Page 31/38

[42] use the Mel-frequency cepstral coefficients (MFCCs) which describe the audio spectral
shape of a signal. The aim is to identify environmental sounds such as restaurants, casinos
and inside a moving vehicle. Overall accuracy is in the 70% range. Rossi et al. [35] present
AmbientSense, which performs real-time ambient sound recognition on a smartphone. The
application analyses the ambient sound sampled from the smartphone’s microphone. The
system can run on the smartphone or in combination with a server. There were 23 ambient
classes that were classified with an overall accuracy of 58%. A system which aims to use a
deep learning framework is DeepEar, Lane et al. [43]. Four coupled deep neural networks of
stacked Restricted Boltzmann Machines perform the classification of sound data. It performs
four classification tasks; acoustic scene classification, stress detection, emotion recognition
and speaker identification. The feasibility of using smartphones is examined, with the
algorithm being deployed on a low power digital signal processor in a smartphone to reduce
power consumption. Results show that if the application runs continuously it only uses 6% of
the battery a day.

An alternative to using sound to determine context is used by Liang et al. [44]. Scene
classification is performed using the data from smartphones sensors. The data from the
microphone, light, WiFi and Bluetooth sensors are used to build an ensemble recognition
model which is based on dynamically-weighted majority learning. Results show that the most
accurate sub-model is the audio classifier, which is significantly more accurate than the light,
WiFi and Bluetooth classifier. This justifies the focus on audio data to perform context
recognition.

4.2.2 Context Recognition in TagItSmart!

The aim of the context module in TagItSmart! is to identify the current context of the user.
This will enable taking context of the user into account during SmartTag scanning process
and other relevant smartphone operations. The aim is to provide security through context
recognition.

Page 32/38

Figure 7The framework of the context recognition module

4.2.2.1 Context recognition module

The aim of the context recognition module is to determine the current context of the user by
using the audio stream from the microphone to identify the environment that the user is
currently in.

The framework for the context recognition module is detailed in Figure 7. The first phase is to
construct the models of the sound data. Audio recordings from the environments are
labelled. Pre-processing is the next step. The aim of pre-processing is to derive features that
will enable the machine learning algorithm to distinguish between different contexts. The Mel-
frequency cepstral coefficients (MFCCs) have been shown to be effective in distinguishing
between contexts, and therefore these will be extracted from the raw data. After pre-
processing, the next step is to construct the model of the data using a machine learning
algorithm. Current research has used a variety of algorithms, including support vector
machines and decision trees. A number of algorithms will be evaluated, with the one that
performs best on the problem of context identification being selected. Once the models have
been constructed, the training phase is complete. The models will be made available within
the context application for the phone to use to classify audio data.

The app on the phone will provide the algorithm for context recognition to occur using the
testing phase. The smart phone will use the microphone to collect samples of sound data
representing the ambient environment that the user is currently in. This data is pre-processed
and then the data is applied to the model and the resulting label will give the current context.

Page 33/38

4.2.2.2 Security through context recognition

The context recognition module will determine if the user is in one of the contexts that are
recognized. The aim of the context module is to use context to provide an additional measure
of security through the disallowing of the scanning of SmartTags in certain environments.
The environments can be set by the user from a closed set of contexts that the module is
able to detect. The aim is for scanning to be prevented in situations where the security of
private and confidential transactions is at risk. For example, banking transactions should only
be conducted at home or at work, not on the street on in other locations. Limiting risky
transactions in places where there are a large number of people, for example supermarkets.
Unsafe environments for sensitive operations are prohibited.

For example, if the user is in a busy crowded place, it might be determined that banking
services on the phone are disabled. This is so that sensitive and secure transactions are not
performed where other people may be able to discover information, such as a bank account
number and screen swipe pattern, about a user.

In the context of TagItSmart this will involve blocking the scanning of certain codes if security
and privacy rules are not met.

• Crowded places where shoulder surfing can occur.
o At an ATM
o On a train
o In a crowded public space

At an ATM, actually the problem can be not only that someone may be shoulder surfing (they
can do this regardless if someone is scanning or not) but even if the person who is scanning
is alone, if the FC-scanner application is compromised, it can see the PIN being typed or
what the account balance on the screen is. Another similar example could be a public toilet;
even without shoulder surfing a compromised FC-scanner application can take pictures in
such environments.

Additional situations of interest are the use of additional context to further improve the
performance of identifying if a human is involved in the scanning progress as well as
protecting from too rapid scanning attempts, which in some situations can be attributed to
malicious attempts or be detrimental to the backend.

In summary, a smartphone that is context-aware will add a further layer of intelligence to the
user environment. The recognition of the current situation that the user is in will allow the
smartphone to tailor its actions, and in some situations, stop the user or phone performing an
action that is deemed to be insecure.

Page 34/38

Section 5 - Conclusions

We have defined the core functions of the FC-Scanner and implemented enablers for them
as part of our previous WP3 deliverable (i.e., D3.1).In this deliverable, we investigate and
report various security and privacy threats related to the usage of the FC-Scanner
application. Based on the identified threats, we propose the use of the various novel security
and privacy preserving techniques to strengthen the security of our FC-Scanner application.
Our proposed solutions to enhance the security of FC-Scanner application include an
adequate mixture of research oriented as well as practical techniques.

The FC-Scanner application running on a user mobile device interacts with the TIS platform
using Internet for following reasons:(i) to send the scanned data to the platform, and (ii) to
fetch the required information from the platform to provide a service to the end users.
Furthermore, the FC-Scanner application also interacts with the SmartTags for scanning
purposes through user mobile camera, and it has access to the sensitive user data (such as
camera data, GPS, other data required for user-oriented service composition, etc.) residing
on the same mobile device. Therefore, ensuring the security and reliability of the FC-Scanner
is an important aspect of the TagItSmart system where an adversary can perform various
attacks by compromising the FC-Scanner functionality or behaviour, such as leaking
sensitive user data to a remote server through the Internet.

Due to the aforementioned reasons, a careful security analysis of the usage of various
scanning and authentication enablers of FC-Scanner app (please refer to deliverable D3.1) is
essential. Hence, in this deliverable, we investigate and analyse various security aspects of
the FC-scanner usage, and we design the adequate set of security solutions to
countermeasure the identified security problems. In the remaining months of this task, we will
also perform the implementation of our proposed FC-Scanner security solutions in our use-
cases to analyse their effectiveness and correctness in real-world scenarios.

The FC-scanner uses a large set of contextual information (extracted by using various
sensors in user smartphones) to provide enriched or differentiated services to the users.
These increases the FC-Scanner’s access to the sensitive user data, thus additional security
measures to enforce proper access control/rights on the user data are required. In particular,
the use of contextual information exposes the users to various privacy risks, thus calls for
inclusion of privacy preserving mechanisms. In order to address these challenges in an
exhaustive manner, we will analyse and envision various solutions (in deliverable D3.3 in
M24) to ensure, the user privacy-preservation, and the correct working of the context-aware
management system both for security and service customization purposes. D3.3 will also
present the final enablers for FC-scanners while the integrated FC-scanner environment will
be reported in D3.4 at M30.

Page 35/38

Section 6 - References

[1] G. Inc., Android Smartphone Sales Report, 2013, (Online; Last Accessed March 17,
2014). Available: http://www.gartner.com/newsroom/id/2665715.

[2] Android. Bgserv, (Online; Last Accessed February 12, 2011). Available:
http://www.symantec.com/security_response/writeup.jsp?docid=2011-031005-2918-99.

[3] Backdoor.AndroidOS.Obad.a, (Online; Last Accesed Dec. 25, 2013). Available:
http://contagiominidump.blogspot.in/2013/06/ backdoorandroidosobada.html.

[4] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “RiskRanker: Scalable and accurate
zero-day Android malware detection,” in Proc. 10th Int. Conf. MobiSys, New York, NY, USA,
pp. 281–294, 2012.

[5] G. Suarez-Tangil, J. Tapiador, P. Peris-Lopez, and A. Ribagorda, “Evolution, detection
and analysis of malware for smart devices,” IEEE Commun. Surveys Tuts., vol. 16, no. 2, pp.
961–987, 2014.

[6] Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M. S., Conti, M. &Rajarajan, M,
“Android Security: A Survey of Issues, Malware Penetration, and Defenses,” IEEE
Communications Surveys and Tutorials, 17(2), pp. 998-1022, 2015.

[7] ParvezFaruki, Hossein Fereidooni, Vijay Laxmi, Mauro Conti, Manoj Singh Gaur, “Android
Code Protection via Obfuscation Techniques: Past, Present and Future Directions,” CoRR
abs/1611.10231, 2016.

[8] W. Zhou, Y. Zhou, and X. Jiang, “Hey, you get off my market: Detecting malicious apps in
official and third party android markets,” in Proc. Annu. NDSS, New York, NY, USA, pp. 1–
13, 2012.

[9] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “Andromaly: A behavioural
malware detection framework for android devices,” J. Intell. Inf. Syst., vol. 38, no. 1, pp. 161–
190, 2012.

[10] CVE, (Online; Last Accessed Feb. 11). Available: http://cve.mitre.org/

[11] G. Andre and P. Ramos, “Boxer SMS Trojan,” ESET Latin American Lab, Bratislava,
Slovakia, Tech. Rep., 2013.

[12] Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo, “CRePE: Context-Related Policy
Enforcement for Android,” pp. 331–345, 2011.

[13] Mohammad Nauman, Sohail Khan, and Xinwen Zhang, “Apex: Extending Android
Permission Model and Enforcement with User-defined Runtime Constraints Mohammad,” In
Proceedings of the 5th ACM Symposium on Information, Computer and Communications
Security - ASIACCS ’10, p. 328, 2010.

[14] Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi, “Flexible and fine-grained
mandatory access control on Android for diverse security and privacy policies,” In
Proceedings of the 22nd USENIX Security Symposium, pp. 131–146, 2013.

